
finestre.com

SCHEDA TECNICA

Valore U_w ≥ 0,79

Porte alzanti scorrevoli IDEAL Premium

- Posa in luce
- Design complanare
- Profondità di montaggio 197 mm

Risparmio energetico con le nuove finestre				
Coeff. U _w (vecchio)	3,50 W/(m ² K)			
Coeff. U _w (nuovo)	0,79 W/(m ² K)			
Superficie della finestra	30 m²			
Risparmio annuo sul riscaldamento	1.078 litri			
Scarico annuale di anidride carbonica	2.911 kg			
Indicazioni energetiche				
Fattore di conversione chilogrammo/ litro di olio combustibile	1,19			
Conversione del potere calorifico Wh/kg	11.800			
Efficienza di riscaldamento	0,75			

DOTAZIONI DI SICURZZA / FERRAMENTA

STANDARD:

- 2 punti di chiusura
- Soglia ribassata
- Rinforzo in alluminio per l'intero telaio
- Guida superiore in alluminio
- Peso massimo dell'anta: 450 kg

OPZIONALE:

- Livelli di sicurezza: RC2, EN 1627-1630
- Serratura sull'anta attiva, chiusura interna ed esterna
- Movimento comfort
- Ferramenta fino a 600 kg
- SoftClose
- Contatto magnetico Aerocontrol per sistemi di allarme

COLORI

- Entrambi i lati: Bianco papiro o nero per rivestimenti scuri
- Uno o entrambi i lati: nero per rivestimenti scuri
- Rivestimento secondo l'attuale listino prezzi secondo la gamma di colori del PVC

ABBATTIMENTO ACUSTICO

Finestra vetrata RwP fino a 44 dB

SPESSORE DEL VETRO

Da 24 mm a 51 mm

GUARNIZIONI

- Isolamento centrale con doppia guarnizione
- Sistema con 2 guarnizioni nella zona dell'anta

Qualità certificata Finestre in PVC EN 14351 – 1: 2006+A1:2010

CERTIFICATO N.: 191 8004857

Qualità certificata Finestre antieffrazione EN 1627: 2011-RC2

CERTIFICATO N. reg.: 191 8004857

VALORI TECNICI

- Impermeabilità all'aria: categoria 3 (secondo la norma EN 12207)
- Impermeabilità all'acqua: categoria A4 (secondo la norma EN 12208)
- Resistenza alla pressione del vento: categoria B2 (secondo la norma EN 12210)

Nota bene:

le categorie qui elencate sono minime. Se hai dei requisiti superiori, contattaci.

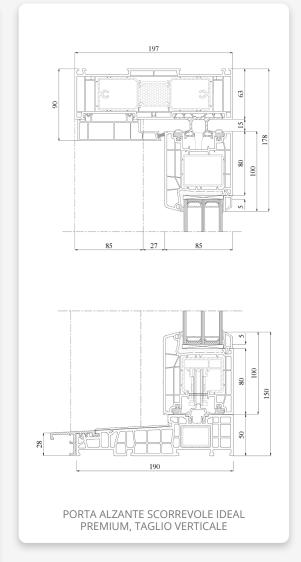
ISOLAMENTO TERMICO

- Dimensioni di riferimento 3.500 x 2.180 mm
- $U_f = 1.1 \text{ W/(m}^2\text{K})$
- Requisito minimo secondo GEG2020: U_w = 1,3 W/(m²K)

U _g vetro (W/m²K) secondo lo standard EN 673	U _w porta scorrevole (W/m²K)			
	Bordo caldo			
	Alluminio	PVC	PVC Ultimate	
Vetro in 2 parti	Psi = 0,066 (W/mK)	Psi = 0,041 (W/mK)	Psi = 0,032 (W/mK)	
1,1	1,3 (1,29)	1,3 (1,25)	1,2 (1,23)	
1,0	1,2 (1,22)	1,2 (1,17)	1,2 (1,16)	
Vetro in 3 parti	Psi = 0,064 (W/mK)	Psi = 0,039 (W/mK)	Psi = 0,030 (W/mK)	
0,7	1,0 (0,99)	1,0 (0,95)	0,9 (0,93)	
0,6	0,8 (0,86)	0,8 (0,82)	0,8 (0,79)	

I coeff. $\rm U_w$ <1,0 W/($\rm m^2 K$) sono indicati con due decimali secondo la norma EN ISO 10077

I coeff. $U_w > 1,0 \text{ W/(m}^2\text{K})$ sono indicati con una cifra decimale secondo la norma EN ISO 10077, qui con due cifre decimali


I coeff. PSI specificati sono ricavati dalle schede tecniche della sezione "bordo caldo"

ABBATTIMENTO ACUSTICO

Dimensioni di riferimento 3.600 x 2.300 mm (Articoli con certificato di prova)

R _w ≙ R _{wP} = valore di prova HST	Struttura Vetro in 3 parti	R _{wP} = valore di prova vetro	Numero del certificato di prova
33 dB	4/12Ar/4/12Ar/4	32 dB	14/03-A092-K1
39 dB	8/12Ar/4/12Ar/6	39 dB	14/03-A092-K2
44 dB	8VSGSi/12Ar/6/12Ar/8VSG	-	14/03-A092-K3

Per l'Italia si applica la norma EN EN 4109:1989-11: R_w corrisponde a R_{wP} ; R_{wR} = R_{wP} - 2 dB

SCHEMI POSSIBILI:

POSSIBILI FERMAVETRO:

STANDARD

